Journal cover Journal topic
Proceedings of the International Association of Hydrological Sciences An open-access publication for refereed proceedings in hydrology
Journal topic

Journal metrics

CiteScore value: 0.9
SNIP value: 0.504
IPP value: 0.81
SJR value: 0.296
Scimago H <br class='widget-line-break'>index value: 11
Scimago H
h5-index value: 19
Articles | Volume 364
Proc. IAHS, 364, 3–8, 2014
Proc. IAHS, 364, 3–8, 2014

  16 Sep 2014

16 Sep 2014

Variational data assimilation with the YAO platform for hydrological forecasting

A. Abbaris1, H. Dakhlaoui3,2, S. Thiria1, and Z. Bargaoui2 A. Abbaris et al.
  • 1LOCEAN, Université Pierre et Marie Curie, Institut Pierre Simon Laplace, 4, place Jussieu 75252 Paris Cedex 05, France
  • 2LMHE, Université Tunis El-Manar, Ecole Nationale d’Ingénieurs de Tunis, BP 37, 1003 Tunis le Belvédère, Tunisia
  • 3ENAU, Université de Carthage, 20 Rue El Qods, 2026 Sidi Bou Saïd, Tunis, Tunisia

Keywords: Variational assimilation, YAO, HBV model, hydrological forecasting, optimisation, SCE-UA

Abstract. In this study data assimilation based on variational assimilation was implemented with the HBV hydrological model using the YAO platform of University Pierre and Marie Curie (France). The principle of the variational assimilation is to consider the model state variables as control variables and optimise them by minimizing a cost function measuring the disagreement between observations and model simulations. The variational assimilation is used for the hydrological forecasting. In this case four state variables of the rainfall–runoff model HBV (those related to soil water content in the water balance tank and to water contents in rooting tanks) are considered as control variables. They were updated through the 4D-VAR procedure using daily discharge incoming information. The Serein basin in France was studied and a high level of forecasting accuracy was obtained with variational assimilation allowing flood anticipation.

Publications Copernicus